New Security Results on Encrypted Key Exchange

Emmanuel Bresson
Olivier Chevassut
David Pointcheval

CELAR – France LBNL – DOE – USA CNRS-ENS – France

Summary

- Contributions of this talk
 - Encrypted Key Exchange example
 - Security Results
- One-Mask Diffie-Hellman Scheme
 - Password-based Authentication
 - Security Model
 - Analysis of the Protocol
 - Properties Denial of service
- Conclusion

Summary

- Contributions of this talk
 - Encrypted Key Exchange example
 - Security Results
- One-Mask Diffie-Hellman Scheme
 - Password-based Authentication
 - Security Model
 - Analysis of the Protocol
 - Properties Denial of service
- Conclusion

Key Exchange Schemes

- Alice and Bob agree on a common secret key sk, in order to establish a secret channel
- Intuitively: implicit authentication
 - only the intended partners can compute the session key
- Formally: semantic security
 - the session key sk is indistinguishable from a random string r, to anybody else

Example: Diffie-Hellamn

- Diffie-Hellman Key Exchange
 - $G=\langle g \rangle$, cyclic group of prime order p
 - Alice chooses $x \in \mathbb{Z}_p$ and sends $X = g^x$
 - Bob chooses $y \in \mathbb{Z}_p$ ans sends $Y = g^y$
 - Both can compute $K=g^{xy}$
- (Passive) Security under DDH Assumption
- No security against active adversaries
 - Authentication is needed

How Authentication is Done

- **Asymmetric:** (sk_A, pk_A) and possibly (sk_B, pk_B)
 - they authentify to each other using the knowledge of the private key associated to the certified public key
- Symmetric: common (long / high-entropy) secret
 - they use the long term secret to derive a secure and authenticated ephemeral key sk
- Password: common (short / low-entropy) secret
 - let us assume a 20-bit password

EKE - AuthA

EKE

Bellovin-Merritt 1992

Two-flow Encrypted
Key Exchange

AuthA

Bellare-Rogaway 2000

OEKE = One-flow Encrypted Key Exchange

Both schemes used an ``ideal cipher´´

New Results

- Provable security is achieved for both EKE and AuthA
 - In the random oracle model only
 - Based on CDH assumption

- Which means...
 - Security against dictionary attacks
 - Semantic security of the session key
- Add Denial-of-Service protection

Summary

- Contributions of this talk
 - Encrypted Key Exchange example
 - Security Results
- One-Mask Diffie-Hellman Scheme
 - Password-based Authentication
 - Security Model
 - Analysis of the Protocol
 - Properties Denial of service
- Conclusion

Password-based Authentication

- Password (short / low-entropy secret say 20 bits)
 - exhaustive search is possible
- Basic attack: on-line exhaustive search
 - the adversary guesses a password
 - tries to play the protocol with this guess
 - failure ⇒ it erases the password from the list
 - and restarts...
- after 2²⁰ attempts, the adversary wins

Dictionary Attack

- The on-line exhaustive search
 - cannot be prevented
 - can be made less serious (delay, limitations, ...)

We want it to be the best attack...

- The off-line exhaustive search
 - a few passive or active attacks
 - failure ⇒ erasure of MANY passwords from the list
 - this is called <u>dictionary attack</u>

Example: EKE

- The most famous scheme EKE:
 - **Encrypted Key Exchange**
- 2 flows are encrypted with the password.
- Must be done carefully: no redundancy
- \blacksquare For each password π
 - decrypt X'
 - check whether it begins with "Alice"

bad one!

One-Mask Diffie-Hellman KE

Client A

Password π and $\Pi = G(\pi)$

Server S

$$x \in \mathbf{Z}_q, X = g^x$$
 Alice, $X^* = X.\Pi$

$$X = X*/\Pi$$
$$y \in \mathbf{Z}_q, Y = g^y$$
$$K = X^y$$

$$K=Y^x$$
 Auths=?

Bob, Y, Auths

Auths= $H(A,S,X^*,Y,\Pi,K)$

 $H(A,S,X^*,Y,\Pi,K)$

 $Sk=H'(A,S,X^*,Y,\Pi,K)$

Security Model

As many Execute, Send and Reveal queries as the adversary wants

But one **Test**-query, with *b* to be guessed...

Passive/Active Adversaries

- Passive adversary: history built using
 - the Execute-queries ⇒ transcripts
 - the Reveal-queries ⇒ session keys
 - must learn no information about password
- Active adversary: entire control of the network
 - the Send-queries ⇒ send arbitrary messages
 - a Send-query allows to erase at most one password from the list

Semantic Security

For breaking the semantic security, the adversary asks one Test-query which is answered, according to a random bit b, by

```
• the actual secret data sk (if b=0)
```

- a random string r (if b=1)
- \blacksquare \Rightarrow the adversary has to guess this bit b

OMDHKE: New Security Result

- Assumptions
 - the random-oracle model for G, H and H1
- Notations
 - q_s , the number of Send-queries (active and adaptive)
 - q_h , the number of Hash-queries to G, H and H1
 - N, the number of passwords
- Semantic security of DHKE :

```
advantage \geq 12q_s/N + \epsilon,
```

 \Rightarrow CDH problem : probability $\geq \varepsilon/qh^2$

(within almost the same time)

One-Mask DHKE: the Proof

Client A

Password π and $\Pi = G(\pi)$

Server S

$$x \in \mathbf{Z}_q, X^* = g^x$$

Alice,
$$X^* = X$$
. Π

$$X = X*/\Pi$$

$$y \in \mathbf{Z}_q, Y = g^y$$

$$K = X^y$$

$$K=Y^x$$

Auths=?

Bob, Y, Auths

Auths=

 $H(A,S,X^*,Y,\Pi,K)$

 $H(A,S,X^*,Y,\overline{\Pi,K})$

$$sk=H_1(A,S,X^*,Y,H,K)$$

The Proof (2)

Client A

Password π and $\Pi = G(\pi)$

Server S

$$x \in \mathbf{Z}_q, X^* = g^x$$

Alice,
$$X^* = X$$
. Π

$$X = X*/\Pi$$

$$y \in \mathbf{Z}_q, Y = g^y$$

$$K-X^y$$

$$K=Y^{x}$$

Auth*s*=?

Bob, Y, Auths

Auths=

 $H(A,S,X^*,Y,\Pi,K)$

 $H(A, S, X^*, Y, \overline{\Pi, K})$

$$sk=H_1(A,S,X^*,Y,H,K)$$

The Proof (3)

Password π and $\Pi = G(\pi)$

Server S

$$x \in \mathbf{Z}_q, X^* = g^x$$

Alice,
$$X^* = X$$
. Π

$$X = X*/\Pi$$
$$y \in \mathbf{Z}_{q}, Y = g^{y}$$

$$K = X^{y}$$

$$K=Y^x$$

Auths=?

$$H(A,S,X^*,Y,\Pi,K)$$

$$H(A, S, X^*, Y, \overline{\Pi, K})$$

$$sk=H_1(A,S,X^*,Y,\overline{H,K})$$

The Proof (4)

Password π and H= $G(\pi)$

Server S

$$x \in \mathbf{Z}_q, X^* = g^x$$

Alice,
$$X^* = X$$
. Π

$$Y = X*/\Pi$$
$$y \in \mathbf{Z}_q, Y = g^y$$

$$K=X^{y}$$

$$K=Y^x$$

Auths=?

Auths=

 $H(A,S,X^*,Y,\Pi,K)$

$$H(A,S,X^*,Y,\overline{\Pi,K})$$

$$sk=H_1(A,S,X^*,Y,H,K)$$

One-Mask DH Key Exchange

- The simulated execution is indistinguishable from the real one, unless:
 - adversary asks the random oracle on values such as (A, S, X*, Y, Π, K)
 - if both X* and Y are simulated from an instance of the DH problem, the adversary has solved it (when submitting K)
 - if one of these values is <u>built by the adversary</u>, it corresponds to an active attempt => at most q_s
 - adversary has guessed the password by pure chance: proba $\leq q_s/N$ since, the password is information-theoretically hidden in the simulation

DoS Resistance

- Denial of service attacks
 - The server never acceptes anything, but rather crashes after memory exhaustion
- Use of cryptographic puzzles
 - Client has to perform a (small) exhaustive search
 - Server can easily solve the correctness

Summary

- Contributions of this talk
 - Encrypted Key Exchange example
 - Security Results
- One-Mask Diffie-Hellman Scheme
 - Password-based Authentication
 - Security Model
 - Analysis of the Protocol
 - Properties Denial of service
- Conclusion

Conclusion

- One-Mask and Two-Mask EKE variants are
 - provably secure in the random oracle model
 - semantic security
 - unilateral or mutual authentication
- More efficient than EKE
 - only one flow is encrypted
- More suitable for client-server schemes
 - the server can first send a generic flow not encrypted, and thus independent of the client